
Solutions & Examples for PHP Programmers

PHP
Cookbook

David Sklar & Adam Trachtenberg

v

Table of Contents

Preface . xv

1. Strings . 1
1.1 Accessing Substrings 3
1.2 Replacing Substrings 5
1.3 Processing a String One Character at a Time 6
1.4 Reversing a String by Word or Character 7
1.5 Expanding and Compressing Tabs 8
1.6 Controlling Case 10
1.7 Interpolating Functions and Expressions Within Strings 11
1.8 Trimming Blanks from a String 12
1.9 Parsing Comma-Separated Data 14

1.10 Parsing Fixed-Width Delimited Data 15
1.11 Taking Strings Apart 17
1.12 Wrapping Text at a Certain Line Length 20
1.13 Storing Binary Data in Strings 21

2. Numbers . 24
2.1 Checking Whether a String Contains a Valid Number 25
2.2 Comparing Floating Point Numbers 26
2.3 Rounding Floating Point Numbers 27
2.4 Operating on a Series of Integers 28
2.5 Generating Random Numbers Within a Range 29
2.6 Generating Biased Random Numbers 31
2.7 Taking Logarithms 32
2.8 Calculating Exponents 32
2.9 Formatting Numbers 33

vi | Table of Contents

2.10 Printing Correct Plurals 34
2.11 Calculating Trigonometric Functions 35
2.12 Doing Trigonometry in Degrees, not Radians 36
2.13 Handling Very Large or Very Small Numbers 37
2.14 Converting Between Bases 39
2.15 Calculating Using Numbers in Bases Other Than Decimal 40

3. Dates and Times . 42
3.1 Finding the Current Date and Time 43
3.2 Converting Time and Date Parts to an Epoch Timestamp 46
3.3 Converting an Epoch Timestamp to Time and Date Parts 47
3.4 Printing a Date or Time in a Specified Format 48
3.5 Finding the Difference of Two Dates 52
3.6 Finding the Difference of Two Dates with Julian Days 54
3.7 Finding the Day in a Week, Month, Year, or

the Week Number in a Year 55
3.8 Validating a Date 57
3.9 Parsing Dates and Times from Strings 59

3.10 Adding to or Subtracting from a Date 61
3.11 Calculating Time with Time Zones 62
3.12 Accounting for Daylight Saving Time 67
3.13 Generating a High-Precision Time 68
3.14 Generating Time Ranges 69
3.15 Using Non-Gregorian Calendars 70
3.16 Program: Calendar 71

4. Arrays . 75
4.1 Specifying an Array Not Beginning at Element 0 78
4.2 Storing Multiple Elements per Key in an Array 79
4.3 Initializing an Array to a Range of Integers 80
4.4 Iterating Through an Array 81
4.5 Deleting Elements from an Array 83
4.6 Changing Array Size 85
4.7 Appending One Array to Another 87
4.8 Turning an Array into a String 89
4.9 Printing an Array with Commas 91

4.10 Checking if a Key Is in an Array 92
4.11 Checking if an Element Is in an Array 92
4.12 Finding the Position of an Element in an Array 94

Table of Contents | vii

4.13 Finding Elements That Pass a Certain Test 95
4.14 Finding the Largest or Smallest Valued Element in an Array 96
4.15 Reversing an Array 97
4.16 Sorting an Array 98
4.17 Sorting an Array by a Computable Field 99
4.18 Sorting Multiple Arrays 102
4.19 Sorting an Array Using a Method Instead of a Function 103
4.20 Randomizing an Array 104
4.21 Shuffling a Deck of Cards 105
4.22 Removing Duplicate Elements from an Array 106
4.23 Finding the Union, Intersection, or Difference of Two Arrays 107
4.24 Finding All Element Combinations of an Array 109
4.25 Finding All Permutations of an Array 111
4.26 Program: Printing an Array in a

Horizontally Columned HTML Table 114

5. Variables . 117
5.1 Avoiding == Versus = Confusion 118
5.2 Establishing a Default Value 119
5.3 Exchanging Values Without Using Temporary Variables 120
5.4 Creating a Dynamic Variable Name 121
5.5 Using Static Variables 122
5.6 Sharing Variables Between Processes 123
5.7 Encapsulating Complex Data Types as a String 125
5.8 Dumping Variable Contents as Strings 127

6. Functions . 131
6.1 Accessing Function Parameters 132
6.2 Setting Default Values for Function Parameters 133
6.3 Passing Values by Reference 135
6.4 Using Named Parameters 136
6.5 Creating Functions That Take a Variable Number of Arguments 137
6.6 Returning Values by Reference 140
6.7 Returning More Than One Value 140
6.8 Skipping Selected Return Values 142
6.9 Returning Failure 143

6.10 Calling Variable Functions 144
6.11 Accessing a Global Variable Inside a Function 145
6.12 Creating Dynamic Functions 147

viii | Table of Contents

7. Classes and Objects . 148
7.1 Instantiating Objects 152
7.2 Defining Object Constructors 152
7.3 Destroying an Object 154
7.4 Cloning Objects 154
7.5 Assigning Object References 155
7.6 Calling Methods on an Object Returned by Another Method 156
7.7 Accessing Overridden Methods 156
7.8 Using Property Overloading 158
7.9 Using Method Polymorphism 160

7.10 Finding the Methods and Properties of an Object 162
7.11 Adding Properties to a Base Object 164
7.12 Creating a Class Dynamically 165
7.13 Instantiating an Object Dynamically 166

8. Web Basics . 168
8.1 Setting Cookies 169
8.2 Reading Cookie Values 171
8.3 Deleting Cookies 171
8.4 Redirecting to a Different Location 172
8.5 Using Session Tracking 173
8.6 Storing Sessions in a Database 175
8.7 Detecting Different Browsers 179
8.8 Building a GET Query String 180
8.9 Using HTTP Basic Authentication 182

8.10 Using Cookie Authentication 184
8.11 Flushing Output to the Browser 186
8.12 Buffering Output to the Browser 187
8.13 Compressing Web Output with gzip 188
8.14 Hiding Error Messages from Users 189
8.15 Tuning Error Handling 190
8.16 Using a Custom Error Handler 192
8.17 Logging Errors 194
8.18 Eliminating “headers already sent” Errors 195
8.19 Logging Debugging Information 196
8.20 Reading Environment Variables 198
8.21 Setting Environment Variables 199
8.22 Reading Configuration Variables 200
8.23 Setting Configuration Variables 202

Table of Contents | ix

8.24 Communicating Within Apache 203
8.25 Profiling Code 204
8.26 Program: Website Account (De)activator 207
8.27 Program: Abusive User Checker 209

9. Forms . 216
9.1 Processing Form Input 218
9.2 Validating Form Input 219
9.3 Working with Multipage Forms 221
9.4 Redisplaying Forms with Preserved Information and Error Messages 224
9.5 Guarding Against Multiple Submission of the Same Form 227
9.6 Processing Uploaded Files 229
9.7 Securing PHP’s Form Processing 231
9.8 Escaping Control Characters from User Data 232
9.9 Handling Remote Variables with Periods in Their Names 233

9.10 Using Form Elements with Multiple Options 234
9.11 Creating Dropdown Menus Based on the Current Date 235

10. Database Access . 238
10.1 Using Text-File Databases 243
10.2 Using DBM Databases 244
10.3 Connecting to a SQL Database 247
10.4 Querying a SQL Database 249
10.5 Retrieving Rows Without a Loop 251
10.6 Modifying Data in a SQL Database 253
10.7 Repeating Queries Efficiently 254
10.8 Finding the Number of Rows Returned by a Query 257
10.9 Escaping Quotes 258

10.10 Logging Debugging Information and Errors 259
10.11 Assigning Unique ID Values Automatically 262
10.12 Building Queries Programmatically 263
10.13 Making Paginated Links for a Series of Records 268
10.14 Caching Queries and Results 272
10.15 Program: Storing a Threaded Message Board 274

11. Web Automation . 282
11.1 Fetching a URL with the GET Method 283
11.2 Fetching a URL with the POST Method 286
11.3 Fetching a URL with Cookies 288

x | Table of Contents

11.4 Fetching a URL with Headers 289
11.5 Fetching an HTTPS URL 290
11.6 Debugging the Raw HTTP Exchange 291
11.7 Marking Up a Web Page 294
11.8 Extracting Links from an HTML File 295
11.9 Converting ASCII to HTML 297

11.10 Converting HTML to ASCII 298
11.11 Removing HTML and PHP Tags 299
11.12 Using Smarty Templates 300
11.13 Parsing a Web Server Log File 301
11.14 Program: Finding Stale Links 304
11.15 Program: Finding Fresh Links 306

12. XML . 309
12.1 Generating XML Manually 311
12.2 Generating XML with the DOM 313
12.3 Parsing XML with the DOM 316
12.4 Parsing XML with SAX 319
12.5 Transforming XML with XSLT 323
12.6 Sending XML-RPC Requests 326
12.7 Receiving XML-RPC Requests 328
12.8 Sending SOAP Requests 332
12.9 Receiving SOAP Requests 335

12.10 Exchanging Data with WDDX 338
12.11 Reading RSS Feeds 339

13. Regular Expressions . 343
13.1 Switching From ereg to preg 346
13.2 Matching Words 348
13.3 Finding the nth Occurrence of a Match 349
13.4 Choosing Greedy or Nongreedy Matches 350
13.5 Matching a Valid Email Address 352
13.6 Finding All Lines in a File That Match a Pattern 355
13.7 Capturing Text Inside HTML Tags 355
13.8 Escaping Special Characters in a Regular Expression 357
13.9 Reading Records with a Pattern Separator 359

14. Encryption and Security . 361
14.1 Keeping Passwords Out of Your Site Files 363

Table of Contents | xi

14.2 Obscuring Data with Encoding 364
14.3 Verifying Data with Hashes 364
14.4 Storing Passwords 366
14.5 Checking Password Strength 367
14.6 Dealing with Lost Passwords 369
14.7 Encrypting and Decrypting Data 371
14.8 Storing Encrypted Data in a File or Database 376
14.9 Sharing Encrypted Data with Another Web Site 379

14.10 Detecting SSL 380
14.11 Encrypting Email with GPG 381

15. Graphics . 384
15.1 Drawing Lines, Rectangles, and Polygons 387
15.2 Drawing Arcs, Ellipses, and Circles 389
15.3 Drawing with Patterned Lines 391
15.4 Drawing Text 392
15.5 Drawing Centered Text 395
15.6 Building Dynamic Images 399
15.7 Getting and Setting a Transparent Color 402
15.8 Serving Images Securely 403
15.9 Program: Generating Bar Charts from Poll Results 404

16. Internationalization and Localization . 409
16.1 Listing Available Locales 410
16.2 Using a Particular Locale 411
16.3 Setting the Default Locale 412
16.4 Localizing Text Messages 413
16.5 Localizing Dates and Times 416
16.6 Localizing Currency Values 417
16.7 Localizing Images 420
16.8 Localizing Included Files 422
16.9 Managing Localization Resources 422

16.10 Using gettext 424
16.11 Reading or Writing Unicode Characters 425

17. Internet Services . 427
17.1 Sending Mail 428
17.2 Sending MIME Mail 431
17.3 Reading Mail with IMAP or POP3 433

xii | Table of Contents

17.4 Posting Messages to Usenet Newsgroups 436
17.5 Reading Usenet News Messages 438
17.6 Getting and Putting Files with FTP 443
17.7 Looking Up Addresses with LDAP 445
17.8 Using LDAP for User Authentication 447
17.9 Performing DNS Lookups 449

17.10 Checking if a Host Is Alive 451
17.11 Getting Information About a Domain Name 452

18. Files . 455
18.1 Creating or Opening a Local File 458
18.2 Creating a Temporary File 460
18.3 Opening a Remote File 461
18.4 Reading from Standard Input 461
18.5 Reading a File into a String 462
18.6 Counting Lines, Paragraphs, or Records in a File 464
18.7 Processing Every Word in a File 466
18.8 Reading a Particular Line in a File 467
18.9 Processing a File Backwards by Line or Paragraph 468

18.10 Picking a Random Line from a File 469
18.11 Randomizing All Lines in a File 470
18.12 Processing Variable Length Text Fields 471
18.13 Reading Configuration Files 472
18.14 Reading from or Writing to a Specific Location in a File 474
18.15 Removing the Last Line of a File 475
18.16 Modifying a File in Place Without a Temporary File 477
18.17 Flushing Output to a File 479
18.18 Writing to Standard Output 480
18.19 Writing to Many Filehandles Simultaneously 481
18.20 Escaping Shell Metacharacters 482
18.21 Passing Input to a Program 483
18.22 Reading Standard Output from a Program 484
18.23 Reading Standard Error from a Program 486
18.24 Locking a File 487
18.25 Reading and Writing Compressed Files 489
18.26 Program: Unzip 491

19. Directories . 493
19.1 Getting and Setting File Timestamps 496

Table of Contents | xiii

19.2 Getting File Information 497
19.3 Changing File Permissions or Ownership 498
19.4 Splitting a Filename into Its Component Parts 499
19.5 Deleting a File 501
19.6 Copying or Moving a File 501
19.7 Processing All Files in a Directory 502
19.8 Getting a List of Filenames Matching a Pattern 503
19.9 Processing All Files in a Directory 504

19.10 Making New Directories 507
19.11 Removing a Directory and Its Contents 508
19.12 Program: Web Server Directory Listing 509
19.13 Program: Site Search 514

20. Client-Side PHP . 518
20.1 Parsing Program Arguments 522
20.2 Parsing Program Arguments with getopt 523
20.3 Reading from the Keyboard 527
20.4 Reading Passwords 528
20.5 Displaying a GUI Widget in a Window 530
20.6 Displaying Multiple GUI Widgets in a Window 532
20.7 Responding to User Actions 535
20.8 Displaying Menus 537
20.9 Program: Command Shell 540

20.10 Program: Displaying Weather Conditions 543

21. PEAR . 552
21.1 Using the PEAR Package Manager 554
21.2 Finding PEAR Packages 557
21.3 Finding Information About a Package 558
21.4 Installing PEAR Packages 559
21.5 Installing PECL Packages 561
21.6 Upgrading PEAR Packages 563
21.7 Uninstalling PEAR Packages 564
21.8 Documenting Classes with PHPDoc 565

Index . 569

PHP Cookbook

David Sklar and Adam Trachtenberg

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

168

Chapter 8 CHAPTER 8

Web Basics

8.0 Introduction
Web programming is probably why you’re reading this book. It’s why the first ver-
sion of PHP was written and what continues to make it so popular today. PHP makes
it easy to write dynamic web programs that do almost anything. Other chapters
cover various PHP capabilities, like graphics, regular expressions, database access,
and file I/O. These capabilities are all part of web programming, but this chapter
focuses on some web-specific concepts and organizational topics that will make your
web programming stronger.

Recipes 8.1, 8.2, and 8.3 show how to set, read, and delete cookies. A cookie is a
small text string that the server instructs the browser to send along with requests the
browser makes. Normally, HTTP requests aren’t “stateful”; each request can’t be
connected to a previous one. A cookie, however, can link different requests to the
same user. This makes it easier to build features such as shopping carts or keep track
of a user’s search history.

Recipe 8.4 shows how to redirect users to a different web page than the one they
requested. Recipe 8.5 explains the session module, which lets you easily associate
persistent data with a user as he moves through your site. Recipe 8.6 demonstrates
how to store session information in a database, which increases the scalability and
flexibility of your web site. Discovering the features of a user’s browser is shown in
Recipe 8.7. Recipe 8.8 shows the details of constructing a URL that includes a GET
query string, including proper encoding of special characters and handling of HTML
entities.

The next two recipes demonstrate how to use authentication, which lets you protect
your web pages with passwords. PHP’s special features for dealing with HTTP Basic
authentication are explained in Recipe 8.9. Sometimes it’s a better idea to roll your
own authentication method using cookies, as shown in Recipe 8.10.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.1 Setting Cookies | 169

The three following recipes deal with output control. Recipe 8.11 shows how to
force output to be sent to the browser. Recipe 8.12 explains the output buffering
functions. Output buffers enable you to capture output that would otherwise be
printed or delay output until an entire page is processed. Automatic compression of
output is shown in Recipe 8.13.

Recipes 8.14 to 8.19 cover error handling topics, including controlling where errors
are printed, writing custom functions to handle error processing, and adding debug-
ging assistance information to your programs. Recipe 8.18 includes strategies for
avoiding the common “headers already sent” error message, such as using the out-
put buffering discussed in Recipe 8.12.

The next four recipes show how to interact with external variables: environment vari-
ables and PHP configuration settings. Recipes 8.20 and 8.21 discuss environment
variables, while Recipes 8.22 and 8.23 discuss reading and changing PHP configura-
tion settings. If Apache is your web server, you can use the techniques in Recipe 8.24
to communicate with other Apache modules from within your PHP programs.

Recipe 8.25 demonstrates a few methods for profiling and benchmarking your code.
By finding where your programs spend most of their time, you can focus your devel-
opment efforts on improving the code that has the most noticeable speed-up effect to
your users.

This chapter also includes two programs that assist in web site maintenance. Pro-
gram 8.26 validates user accounts by sending an email message with a customized
link to each new user. If the user doesn’t visit the link within a week of receiving the
message, the account is deleted. Program 8.27 monitors requests in real time on a
per-user basis and blocks requests from users that flood your site with traffic.

8.1 Setting Cookies

Problem
You want to set a cookie.

Solution
Use setcookie():

setcookie('flavor','chocolate chip');

Discussion
Cookies are sent with the HTTP headers, so setcookie() must be called before any
output is generated.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 8: Web Basics

You can pass additional arguments to setcookie() to control cookie behavior. The
third argument to setcookie() is an expiration time, expressed as an epoch time-
stamp. For example, this cookie expires at noon GMT on December 3, 2004:

setcookie('flavor','chocolate chip',1102075200);

If the third argument to setcookie() is missing (or empty), the cookie expires when
the browser is closed. Also, many systems can’t handle a cookie expiration time
greater than 2147483647, as discussed in the introduction to Chapter 3, since that is
the largest epoch timestamp that fits in a 32-bit integer.

The fourth argument to setcookie() is a path. The cookie is sent back to the server
only when pages whose path begin with the specified string are requested. For exam-
ple, this cookie is sent back only to pages whose path begins with /products/:

setcookie('flavor','chocolate chip','','/products/');

The page that’s setting this cookie doesn’t have to have a URL that begins with /prod-
ucts/, but the cookie is sent back only to pages that do.

The fifth argument to setcookie() is a domain. The cookie is sent back to the server
only when pages whose hostname ends with the specified domain are requested. For
example, the first cookie in the following code is sent back to all hosts in the exam-
ple.com domain, but the second cookie is sent only with requests to the host jean-
nie.example.com:

setcookie('flavor','chocolate chip','','','.example.com');
setcookie('flavor','chocolate chip','','','jeannie.example.com');

If the first cookie’s domain was just example.com instead of .example.com, it would
be sent only to the single host example.com (and not www.example.com or jean-
nie.example.com).

The last optional argument to setcookie() is a flag that if set to 1, instructs the
browser only to send the cookie over an SSL connection. This can be useful if the
cookie contains sensitive information, but remember that the data in the cookie is
stored in the clear on the user’s computer.

Different browsers handle cookies in slightly different ways, especially with regard to
how strictly they match path and domain strings and how they determine priority
between different cookies of the same name. The setcookie() page of the online
manual has helpful clarifications of these differences.

See Also
Recipe 8.2 shows how to read cookie values; Recipe 8.3 shows how to delete cookies;
Recipe 8.12 explains output buffering; Recipe 8.18 shows how to avoid the “headers
already sent” error message that sometimes occurs when calling setcookie(); docu-
mentation on setcookie() at http://www.php.net/setcookie; an expanded cookie speci-
fication is detailed in RFC 2965 at http://www.faqs.org/rfcs/rfc2965.html.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.3 Deleting Cookies | 171

8.2 Reading Cookie Values

Problem
You want to read the value of a cookie that’s been previously set.

Solution
Look in the $_COOKIE superglobal array:

if (isset($_COOKIE['flavor'])) {
 print "You ate a $_COOKIE[flavor] cookie.";
}

Discussion
A cookie’s value isn’t available in $_COOKIE during the request in which the cookie is
set. In other words, the setcookie() function doesn’t alter the value of $_COOKIE. On
subsequent requests, however, each cookie is stored in $_COOKIE. If register_globals
is on, cookie values are also assigned to global variables.

When a browser sends a cookie back to the server, it sends only the value. You can’t
access the cookie’s domain, path, expiration time, or secure status through $_COOKIE
because the browser doesn’t send that to the server.

To print the names and values of all cookies sent in a particular request, loop
through the $_COOKIE array:

foreach ($_COOKIE as $cookie_name => $cookie_value) {
 print "$cookie_name = $cookie_value
";
}

See Also
Recipe 8.1 shows how to set cookies; Recipe 8.3 shows how to delete cookies; Rec-
ipe 8.12 explains output buffering; Recipe 8.18 shows how to avoid the “headers
already sent” error message that sometimes occurs when calling setcookie(); Recipe
9.7 for information on register_globals.

8.3 Deleting Cookies

Problem
You want to delete a cookie so a browser doesn’t send it back to the server.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 8: Web Basics

Solution
Call setcookie() with no value for the cookie and an expiration time in the past:

setcookie('flavor','',time()-86400);

Discussion
It’s a good idea to make the expiration time a few hours or an entire day in the past,
in case your server and the user’s computer have unsynchronized clocks. For exam-
ple, if your server thinks it’s 3:06 P.M. and a user’s computer thinks it’s 3:02 P.M., a
cookie with an expiration time of 3:05 P.M. isn’t deleted by that user’s computer
even though the time is in the past for the server.

The call to setcookie() that deletes a cookie has to have the same arguments (except
for value and time) that the call to setcookie() that set the cookie did, so include the
path, domain, and secure flag if necessary.

See Also
Recipe 8.1 shows how to set cookies; Recipe 8.2 shows how to read cookie values;
Recipe 8.12 explains output buffering; Recipe 8.18 shows how to avoid the “headers
already sent” error message that sometimes occurs when calling setcookie(); docu-
mentation on setcookie() at http://www.php.net/setcookie.

8.4 Redirecting to a Different Location

Problem
You want to automatically send a user to a new URL. For example, after successfully
saving form data, you want to redirect a user to a page that confirms the data.

Solution
Before any output is printed, use header() to send a Location header with the new
URL:

header('Location: http://www.example.com/');

Discussion
If you want to pass variables to the new page, you can include them in the query
string of the URL:

header('Location: http://www.example.com/?monkey=turtle');

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.5 Using Session Tracking | 173

The URL that you are redirecting a user to is retrieved with GET. You can’t redirect
someone to retrieve a URL via POST. You can, however, send other headers along
with the Location header. This is especially useful with the Window-target header,
which indicates a particular named frame or window in which to load the new URL:

header('Window-target: main');
header('Location: http://www.example.com/');

The redirect URL must include the protocol and hostname; it can’t just be a path-
name:

// Good Redirect
header('Location: http://www.example.com/catalog/food/pemmican.php');

// Bad Redirect
header('Location: /catalog/food/pemmican.php');

See Also
Documentation on header() at http://www.php.net/header.

8.5 Using Session Tracking

Problem
You want to maintain information about a user as she moves through your site.

Solution
Use the session module. The session_start() function initializes a session, and
accessing an element in the global $_SESSION array tells PHP to keep of the corre-
sponding variable.

session_start();

$_SESSION['visits']++;

print 'You have visited here '.$_SESSION['visits'].' times.';

Discussion
To start a session automatically on each request, set session.auto_start to 1 in
php.ini. With session.auto_start, there’s no need to call session_start().

The session functions keep track of users by issuing them cookies with a randomly
generated session IDs. If PHP detects that a user doesn’t accept the session ID
cookie, it automatically adds the session ID to URLs and forms.* For example, con-
sider this code that prints a URL:

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 8: Web Basics

print 'Take the A Train';

If sessions are enabled but a user doesn’t accept cookies, what’s sent to the browser
is something like:

Take the A Train

The session name is PHPSESSID and the session ID is
2eb89f3344520d11969a79aea6bd2fdd. PHP adds those to the URL so they are passed
along to the next page. Forms are modified to include a hidden element that passes
the session ID. Redirects with the Location header aren’t automatically modified, so
you have to add a session ID to them yourself using the SID constant:

$redirect_url = 'http://www.example.com/airplane.php';
if (defined('SID') && (! isset($_COOKIE[session_name()]))) {
 $redirect_url .= '?' . SID;
}

header("Location: $redirect_url");

The session_name() function returns the name of the cookie that the session ID is
stored in, so this code appends the SID constant only to $redirect_url if the con-
stant is defined, and the session cookie isn’t set.

By default, PHP stores session data in files in the /tmp directory on your server. Each
session is stored in its own file. To change the directory in which the files are saved,
set the session.save_path configuration directive in php.ini to the new directory. You
can also call session_save_path() with the new directory to change directories, but
you need to do this before accessing any session variables.

See Also
Documentation on session_start() at http://www.php.net/session-start, session_
save_path() at http://www.php.net/session-save-path; the session module has a num-
ber of configuration directives that help you do things like manage how long ses-
sions can last and how they are cached; these are detailed in the sessions section of
the online manual at http://www.php.net/session.

* Before PHP 4.2.0, this behavior had to be explicitly enabled by building PHP with the --enable-trans-sid
configuration setting.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.6 Storing Sessions in a Database | 175

8.6 Storing Sessions in a Database

Problem
You want to store session data in a database instead of in files. If multiple web serv-
ers all have access to the same database, the session data is then mirrored across all
the web servers.

Solution
Set session.save_handler to user in php.ini and use the pc_DB_Session class shown in
Example 8-1. For example:

$s = new pc_DB_Session('mysql://user:password@localhost/db');
ini_get('session.auto_start') or session_start();

Discussion
One of the most powerful aspects of the session module is its abstraction of how ses-
sions get saved. The session_set_save_handler() function tells PHP to use different
functions for the various session operations such as saving a session and reading ses-
sion data. The pc_DB_Session class stores the session data in a database. If this data-
base is shared between multiple web servers, users’ session information is portable
across all those web servers. So, if you have a bunch of web servers behind a load
balancer, you don’t need any fancy tricks to ensure that a user’s session data is accu-
rate no matter which web server they get sent to.

To use pc_DB_Session, pass a data source name (DSN) to the class when you instanti-
ate it. The session data is stored in a table called php_session whose structure is:

CREATE TABLE php_session (
 id CHAR(32) NOT NULL,
 data MEDIUMBLOB,
 last_access INT UNSIGNED NOT NULL,
 PRIMARY KEY(id)
)

If you want the table name to be different than php_session, set session.save_path in
php.ini to your new table name. Example 8-1 shows the pc_DB_Session class.

Example 8-1. pc_DB_Session class

require 'PEAR.php';
require 'DB.php';

class pc_DB_Session extends PEAR {

 var $_dbh;
 var $_table;

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 8: Web Basics

 var $_connected = false;
 var $_gc_maxlifetime;
 var $_prh_read;
 var $error = null;

 /**
 * Constructor
 */
 function pc_DB_Session($dsn = null) {
 if (is_null($dsn)) {
 $this->error = PEAR::raiseError('No DSN specified');
 return;
 }

 $this->_gc_maxlifetime = ini_get('session.gc_maxlifetime');
 // Sessions last for a day unless otherwise specified.
 if (! $this->_gc_maxlifetime) {
 $this->_gc_maxlifetime = 86400;
 }

 $this->_table = ini_get('session.save_path');
 if ((! $this->_table) || ('/tmp' == $this->_table)) {
 $this->_table = 'php_session';
 }

 $this->_dbh = DB::connect($dsn);
 if (DB::isError($this->_dbh)) {
 $this->error = $this->_dbh;
 return;
 }

 $this->_prh_read = $this->_dbh->prepare(
 "SELECT data FROM $this->_table WHERE id LIKE ? AND last_access >= ?");
 if (DB::isError($this->_prh_read)) {
 $this->error = $this->_prh_read;
 return;
 }

 if (! session_set_save_handler(array(&$this,'_open'),
 array(&$this,'_close'),
 array(&$this,'_read'),
 array(&$this,'_write'),
 array(&$this,'_destroy'),
 array(&$this,'_gc'))) {
 $this->error = PEAR::raiseError('session_set_save_handler() failed');
 return;
 }

 return $this->_connected = true;
 }

 function _open() {

Example 8-1. pc_DB_Session class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.6 Storing Sessions in a Database | 177

 return $this->_connected;
 }

 function _close() {
 return $this->_connected;
 }

 function _read($id) {
 if (! $this->_connected) { return false; }
 $sth =
 $this->_dbh->execute($this->_prh_read,
 array($id,time() - $this->_gc_maxlifetime));
 if (DB::isError($sth)) {
 $this->error = $sth;
 return '';
 } else {
 if (($sth->numRows() == 1) &&
 ($ar = $sth->fetchRow(DB_FETCHMODE_ORDERED))) {
 return $ar[0];
 } else {
 return '';
 }
 }
 }

 function _write($id,$data) {
 $sth = $this->_dbh->query(
 "REPLACE INTO $this->_table (id,data,last_access) VALUES (?,?,?)",
 array($id,$data,time()));
 if (DB::isError($sth)) {
 $this->error = $sth;
 return false;
 } else {
 return true;
 }
 }

 function _destroy($id) {
 $sth = $this->_dbh->query("DELETE FROM $this->_table WHERE id LIKE ?",
 array($id));
 if (DB::isError($sth)) {
 $this->error = $sth;
 return false;
 } else {
 return true;
 }
 }

 function _gc($maxlifetime) {
 $sth = $this->_dbh->query("DELETE FROM $this->_table WHERE last_access < ?",
 array(time() - $maxlifetime));
 if (DB::isError($sth)) {

Example 8-1. pc_DB_Session class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 8: Web Basics

The pc_DB_Session::_write() function uses a MySQL-specific SQL command,
REPLACE INTO, which updates an existing record or inserts a new one, depending on
whether there is already a record in the database with the given id field. If you’re
using a different database, modify the _write() function to accomplish the same
task. For example, delete the existing row (if any), and insert a new one, all inside a
transaction:

 function _write($id,$data) {
 $sth = $this->_dbh->query('BEGIN WORK');
 if (DB::isError($sth)) {
 $this->error = $sth;
 return false;
 }
 $sth = $this->_dbh->query("DELETE FROM $this->_table WHERE id LIKE ?",
 array($id));
 if (DB::isError($sth)) {
 $this->error = $sth;
 $this->_dbh->query('ROLLBACK');
 return false;
 }
 $sth = $this->_dbh->query(
 "INSERT INTO $this->_table (id,data,last_access) VALUES (?,?,?)",
 array($id,$data,time()));
 if (DB::isError($sth)) {
 $this->error = $sth;
 $this->_dbh->query('ROLLBACK');
 return false;
 }
 $sth = $this->_dbh->query('COMMIT');
 if (DB::isError($sth)) {
 $this->error = $sth;
 $this->_dbh->query('ROLLBACK');
 return false;
 }

 return true;
 }

See Also
Documentation on session_set_save_handler() at http://www.php.net/session-set-
save-handler; a handler using PostgreSQL is available at http://www.zend.com/

 $this->error = $sth;
 return false;
 } else {
 return true;
 }
 }
}

Example 8-1. pc_DB_Session class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.7 Detecting Different Browsers | 179

codex.php?id=456&single=1;the format for data source names is discussed in Recipe
10.3.

8.7 Detecting Different Browsers

Problem
You want to generate content based on a users’ browser.

Solution
Use the object returned by get_browser() to determine a browser’s capabilities:

<![CDATA[
$browser = get_browser();

if ($browser->frames) {
 // print out a frame-based layout
} elseif ($browser->tables) {
 // print out a table-based layout
} else {
 // print out a boring layout
}
]]>

Discussion
The get_browser() function examines the environment variable $HTTP_USER_AGENT
(set by the web server) and compares it to browsers listed in an external browser
capability file. Due to licensing issues, PHP isn’t distributed with a browser capabil-
ity file. The “Obtaining PHP” section of the PHP FAQ (http://www.php.net/manual/
en/faq.obtaining.php) lists http://www.cyscape.com/asp/browscap/ and http://
www.amrein.com/apps/page.asp?Q=InowDownload as sources for a browser capabili-
ties file, and there is also one at http://asp.net.do/browscap.zip.

Once you download a browser capabilities file, you need to tell PHP where to find it
by setting the browscap configuration directive to the pathname of the file. If you use
PHP as a CGI, set the directive in the php.ini file:

browscap=/usr/local/lib/browscap.txt

If you use Apache, you need to set the directive in your Apache configuration file:

php_value browscap "/usr/local/lib/browscap.txt"

Many of the capabilities get_browser() finds are shown in Table 8-1. For user-config-
urable capabilities such as javascript or cookies though, get_browser() just tells you
if the browser can support those functions. It doesn’t tell you if the user has disabled
the functions. If JavaScript is turned off in a JavaScript-capable browser or a user

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 8: Web Basics

refuses to accept cookies when the browser prompts him, get_browser() still indi-
cates that the browser supports those functions.

See Also
Documentation on get_browser() at http://www.php.net/get-browser.

8.8 Building a GET Query String

Problem
You need to construct a link that includes name/value pairs in a query string.

Solution
Encode the names and values with urlencode() and use join() to create the query
string:

$lt;![CDATA[
$vars = array('name' => 'Oscar the Grouch',
 'color' => 'green',
 'favorite_punctuation' => '#');
$safe_vars = array();
foreach ($vars as $name => $value) {
 $safe_vars[] = urlencode($name).'='.urlencode($value);
}

Table 8-1. Browser capability object properties

Property Description

platform Operating system the browser is running on (e.g., Windows, Macintosh, UNIX, Win32, Linux,
MacPPC)

version Full browser version (e.g., 5.0, 3.5, 6.0b2)

majorver Major browser version (e.g., 5, 3, 6)

minorver Minor browser version (e.g., 0, 5, 02)

frames 1 if the browser supports frames

tables 1 if the browser supports tables

cookies 1 if the browser supports cookies

backgroundsounds 1 if the browser supports background sounds with <embed> or <bgsound>

vbscript 1 if the browser supports VBScript

javascript 1 if the browser supports JavaScript

javaapplets 1 if the browser can run Java applets

activexcontrols 1 if the browser can run ActiveX controls

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.8 Building a GET Query String | 181

$url = '/muppet/select.php?' . join('&',$safe_vars);
]]>

Discussion
The URL built in the solution is:

<![CDATA[
/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23
]]>

The query string has spaces encoded as +. Special characters such as # are hex-
encoded as %23 because the ASCII value of # is 35, which is 23 in hexadecimal.

Although urlencode() prevents any special characters in the variable names or val-
ues from disrupting the constructed URL, you may have problems if your variable
names begin with the names of HTML entities. Consider this partial URL for retriev-
ing information about a stereo system: /stereo.php?speak-
ers=12&cdplayer=52&=10. The HTML entity for ampersand (&) is &, so a
browser interprets that URL as /stereo.php?speakers=12&cdplayer=52&=10.

To prevent embedded entities from corrupting your URLs, you have three choices.
The first is to choose variable names that can’t be confused with entities, such as _amp
instead of amp. The second is to convert characters with HTML entity equivalents to
those entities before printing out the URL. Use htmlentities():

$url = '/muppet/select.php?' . htmlentities(join('&',$safe_vars));

The resulting URL is:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

Your third choice is to change the argument separator from & to ; by setting the con-
figuration directive arg_separator.input to ;. You then join name-value pairs with ;
to produce a query string:

/muppet/select.php?name=Oscar+the+Grouch;color=green;favorite_punctuation=%23

You may run into trouble with any GET method URLs that you can’t explicitly con-
struct with semicolons, such as a form with its method set to GET, because your
users’ browsers use & as the argument separator.

Because many browsers don’t support using ; as an argument separator, the easiest
way to avoid problems with entities in URLs is to choose variable names that don’t
overlap with entity names. If you don’t have complete control over variable names,
however, use htmlentities() to protect your URLs from entity decoding.

See Also
Documentation on urlencode() at http://www.php.net/urlencode and htmlentities()
at http://www.php.net/htmlentities.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 8: Web Basics

8.9 Using HTTP Basic Authentication

Problem
You want to use PHP to protect parts of your web site with passwords. Instead of
storing the passwords in an external file and letting the web server handle the
authentication, you want the password verification logic to be in a PHP program.

Solution
The $PHP_AUTH_USER and $PHP_AUTH_PW global variables contain the username and
password supplied by the user, if any. To deny access to a page, send a WWW-
Authenticate header identifying the authentication realm as part of a response with
status code 401:

header('WWW-Authenticate: Basic realm="My Website"');
header('HTTP/1.0 401 Unauthorized');
echo "You need to enter a valid username and password.";
exit;

Discussion
When a browser sees a 401 header, it pops up a dialog box for a username and pass-
word. Those authentication credentials (the username and password), if accepted by
the server, are associated with the realm in the WWW-Authenticate header. Code that
checks authentication credentials needs to be executed before any output is sent to
the browser, since it might send headers. For example, you can use a function such
as pc_validate(), shown in Example 8-2.

Here’s an example:

if (! pc_validate($PHP_AUTH_USER,$PHP_AUTH_PW)) {
 header('WWW-Authenticate: Basic realm="My Website"');
 header('HTTP/1.0 401 Unauthorized');

Example 8-2. pc_validate()

function pc_validate($user,$pass) {
 /* replace with appropriate username and password checking,
 such as checking a database */
 $users = array('david' => 'fadj&32',
 'adam' => '8HEj838');

 if (isset($users[$user]) && ($users[$user] == $pass)) {
 return true;
 } else {
 return false;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.9 Using HTTP Basic Authentication | 183

 echo "You need to enter a valid username and password.";
 exit;
}

Replace the contents of the pc_validate() function with appropriate logic to deter-
mine if a user entered the correct password. You can also change the realm string
from “My Website” and the message that gets printed if a user hits “cancel” in their
browser’s authentication box from “You need to enter a valid username and pass-
word.”

HTTP Basic authentication can’t be used if you’re running PHP as a CGI. If you
can’t run PHP as a server module, you can use cookie authentication, discussed in
Recipe 8.10.

Another issue with HTTP Basic authentication is that it provides no simple way for a
user to log out, other then to exit his browser. The PHP online manual has a few sug-
gestions for log out methods that work with varying degrees of success with differ-
ent server and browser combinations at http://www.php.net/features.http-auth.

There is a straightforward way, however, to force a user to log out after a fixed time
interval: include a time calculation in the realm string. Browsers use the same user-
name and password combination every time they’re asked for credentials in the same
realm. By changing the realm name, the browser is forced to ask the user for new cre-
dentials. For example, this forces a log out every night at midnight:

if (! pc_validate($PHP_AUTH_USER,$PHP_AUTH_PW)) {
 $realm = 'My Website for '.date('Y-m-d');
 header('WWW-Authenticate: Basic realm="'.$realm.'"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You need to enter a valid username and password.";
 exit;
}

You can also have a user-specific timeout without changing the realm name by stor-
ing the time that a user logs on or accesses a protected page. This example stores
logon time in a database and forces a log out if it’s been more than 15 minutes since
the user last requested a protected page, as shown in the pc_validate2() in
Example 8-3.

Example 8-3. pc_validate2()

function pc_validate2($user,$pass) {
 $safe_user = strtr(addslashes($user),array('_' => '_', '%' => '\%'));
 $r = mysql_query("SELECT password,last_access
 FROM users WHERE user LIKE '$safe_user'");

 if (mysql_numrows($r) == 1) {
 $ob = mysql_fetch_object($r);
 if ($ob->password == $pass) {
 $now = time();
 if (($now - $ob->last_access) > (15 * 60)) {

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 8: Web Basics

For example:

if (! pc_validate($PHP_AUTH_USER,$PHP_AUTH_PW)) {
 header('WWW-Authenticate: Basic realm="My Website"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You need to enter a valid username and password.";
 exit;
}

See Also
Recipe 8.10; the HTTP Authentication section of the PHP online manual at http://
www.php.net/features.http-auth.

8.10 Using Cookie Authentication

Problem
You want more control over the user logon procedure, such as presenting your own
logon form.

Solution
Store authentication status in a cookie or as part of a session. When a user logs in
successfully, put their username in a cookie. Also include a hash of the username and
a secret word so a user can’t just make up an authentication cookie with a username
in it:

$secret_word = 'if i ate spinach';
if (pc_validate($_REQUEST['username'],$_REQUEST['password'])) {
 setcookie('logon',
 $_REQUEST['username'].','.md5($_REQUEST['username'].$secret_word));
}

 return false;
 } else {
 // update the last access time
 mysql_query("UPDATE users SET last_access = NOW()
 WHERE user LIKE '$safe_user'");
 return true;
 }
 }
 } else {
 return false;
 }
}

Example 8-3. pc_validate2() (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.10 Using Cookie Authentication | 185

Discussion
When using cookie authentication, you have to display your own logon form:

<form method="post" action="logon.php">
Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Log On">
</form>

You can use the same pc_validate() function from the Recipe 8.9 to verify the user-
name and password. The only difference is that you pass it $_REQUEST['username']
and $_REQUEST['password'] for the authentication credentials instead of $PHP_AUTH_
USER and $PHP_AUTH_PW. If the password checks out, send back a cookie that contains
the username, a hash of the username, and a secret word. The hash prevents a user
from faking a logon just by sending a cookie with a username in it.

Once the user has logged on, a page just needs to verify that a valid logon cookie was
sent in order to do special things for that logged-on user:

unset($username);
if ($_COOKIE['logon']) {
 list($c_username,$cookie_hash) = split(',',$_COOKIE['logon']);
 if (md5($c_username.$secret_word) == $cookie_hash) {
 $username = $c_username;
 } else {
 print "You have sent a bad cookie.";
 }
}

if ($username) {
 print "Welcome, $username.";
} else {
 print "Welcome, anonymous user.";
}

If you use the built-in session support, you can add the username and hash to the
session and avoid sending a separate cookie. When someone logs on, set an addi-
tional variable in the session instead of sending a cookie:

if (pc_validate($_REQUEST['username'],$_REQUEST['password'])) {
 $_SESSION['logon'] =
 $_REQUEST['username'].','.md5($_REQUEST['username'].$secret_word));
}

The verification code is almost the same; it just uses $_SESSION instead of $_COOKIE:

unset($username);
if ($_SESSION['logon']) {
 list($c_username,$cookie_hash) = split(',',$_SESSION['logon']);
 if (md5($c_username.$secret_word) == $cookie_hash) {
 $username = $c_username;
 } else {
 print "You have tampered with your session.";

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 8: Web Basics

 }
}

Using cookie or session authentication instead of HTTP Basic authentication makes
it much easier for users to log out: you just delete their logon cookie or remove the
logon variable from their session. Another advantage of storing authentication infor-
mation in a session is that you can link users’ browsing activities while logged on to
their browsing activities before they log on or after they log out. With HTTP Basic
authentication, you have no way of tying the requests with a username to the
requests that the same user made before they supplied a username. Looking for
requests from the same IP address is error-prone, especially if the user is behind a
firewall or proxy server. If you are using sessions, you can modify the logon proce-
dure to log the connection between session ID and username:

if (pc_validate($_REQUEST['username'],$_REQUEST['password'])) {
 $_SESSION['logon'] =
 $_REQUEST['username'].','.md5($_REQUEST['username'].$secret_word));
 error_log('Session id '.session_id().' log on as '.$_REQUEST['username']);
}

This example writes a message to the error log, but it could just as easily record the
information in a database that you could use in your analysis of site usage and traffic.

One danger of using session IDs is that sessions are hijackable. If Alice guesses Bob’s
session ID, she can masquerade as Bob to the web server. The session module has
two optional configuration directives that help you make session IDs harder to guess.
The session.entropy_file directive contains a path to a device or file that generates
randomness, such as /dev/random or /dev/urandom. The session.entropy_length
directive holds the number of bytes to be read from the entropy file when creating
session IDs.

No matter how hard session IDs are to guess, they can also be stolen if they are sent
in clear text between your server and a user’s browser. HTTP Basic authentication
also has this problem. Use SSL to guard against network sniffing, as described in
Recipe 14.10.

See Also
Recipe 8.9; Recipe 14.3 discusses verifying data with hashes; documentation on
setcookie() at http://www.php.net/setcookie and on md5() at http://www.php.net/md5.

8.11 Flushing Output to the Browser

Problem
You want to force output to be sent to the browser. For example, before doing a
slow database query, you want to give the user a status update.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.12 Buffering Output to the Browser | 187

Solution
Use flush():

print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
 'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

Discussion
The flush() function sends all output that PHP has internally buffered to the web
server, but the web server may have internal buffering of its own that delays when
the data reaches the browser. Additionally, some browsers don’t display data imme-
diately upon receiving it, and some versions of Internet Explorer don’t display a page
until they’ve received at least 256 bytes. To force IE to display content, print blank
spaces at the beginning of the page:

print str_repeat(' ',300);
print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
 'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

See Also
Recipe 18.17; documentation on flush() at http://www.php.net/flush.

8.12 Buffering Output to the Browser

Problem
You want to start generating output before you’re finished sending headers or cookies.

Solution
Call ob_start() at the top of your page and ob_end_flush() at the bottom. You can
then intermix commands that generate output and commands that send headers.
The output won’t be sent until ob_end_flush() is called:

<?php ob_start(); ?>

I haven't decided if I want to send a cookie yet.

<?php setcookie('heron','great blue'); ?>

Yes, sending that cookie was the right decision.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 8: Web Basics

<?php ob_end_flush(); ?>

Discussion
You can pass ob_start() the name of a callback function to process the output buffer
with that function. This is useful for postprocessing all the content in a page, such as
hiding email addresses from address-harvesting robots:

<?php
function mangle_email($s) {
 return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',
 '<$1@...>',
 $s);
}

ob_start('mangle_email');
?>

I would not like spam sent to ronald@example.com!

<?php ob_end_flush(); ?>

The mangle_email() function transforms the output to:

I would not like spam sent to <ronald@...>!

The output_buffering configuration directive turns output buffering on for all pages:

output_buffering = On

Similarly, output_handler sets a output buffer processing callback to be used on all
pages:

output_handler=devowel

Setting an output_handler automatically sets output_buffering to on.

See Also
Recipe 10.10 uses output buffering in a database error logging function; documenta-
tion on ob_start() at http://www.php.net/ob-start, ob_end_flush() at http://
www.php.net/ob-end-flush, and output buffering at http://www.php.net/outcontrol.

8.13 Compressing Web Output with gzip

Problem
You want to send compressed content to browsers that support automatic decom-
pression.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.14 Hiding Error Messages from Users | 189

Solution
Add this setting to your php.ini file:

zlib.output_compression=1

Discussion
Browsers tell the server that they can accept compressed responses with the Accept-
Encoding header. If a browser sends Accept-Encoding: gzip or Accept-Encoding:
deflate, and PHP is built with the zlib extension, the zlib.output_compression con-
figuration directive tells PHP to compress the output with the appropriate algorithm
before sending it back to the browser. The browser uncompresses the data before
displaying it.

You can adjust the compression level with the zlib.output_compression_level con-
figuration directive:

; minimal compression
zlib.output_compression_level=1

; maximal compression
zlib.output_compression_level=9

At higher compression levels, less data needs to be sent from the server to the
browser, but more server CPU time must be used to compress the data.

See Also
Documentation on the zlib extension at http://www.php.net/zlib.

8.14 Hiding Error Messages from Users

Problem
You don’t want PHP error messages visible to users.

Solution
Set the following values in your php.ini or web server configuration file:

display_errors off
log_errors on

These settings tell PHP not to display errors as HTML to the browser but to put
them in the server’s error log.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 8: Web Basics

Discussion
When log_errors is set to on, error messages are written to the server’s error log. If
you want PHP errors to be written to a separate file, set the error_log configuration
directive with the name of that file:

error_log /var/log/php.error.log

If error_log is set to syslog, PHP error messages are sent to the system logger using
syslog(3) on Unix and to the Event Log on Windows NT.

There are lots of error messages you want to show your users, such as telling them
they’ve filled in a form incorrectly, but you should shield your users from internal
errors that may reflect a problem with your code. There are two reasons for this.
First, these errors appear unprofessional (to expert users) and confusing (to novice
users). If something goes wrong when saving form input to a database, check the
return code from the database query and display a message to your users apologiz-
ing and asking them to come back later. Showing them a cryptic error message
straight from PHP doesn’t inspire confidence in your web site.

Second, displaying these errors to users is a security risk. Depending on your data-
base and the type of error, the error message may contain information about how to
log on to your database or server and how it is structured. Malicious users can use
this information to mount an attack on your web site.

For example, if your database server is down, and you attempt to connect to it with
mysql_connect(), PHP generates the following warning:

Warning: Can't connect to MySQL server on 'db.example.com' (111) in
/www/docroot/example.php on line 3

If this warning message is sent to a user’s browser, he learns that your database
server is called db.example.com and can mount an attack on it.

See Also
Recipe 8.17 for how to log errors; documentation on PHP configuration directives at
http://www.php.net/configuration.

8.15 Tuning Error Handling

Problem
You want to alter the error-logging sensitivity on a particular page. This lets you con-
trol what types of errors are reported.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.15 Tuning Error Handling | 191

Solution
To adjust the types of errors PHP complains about, use error_reporting():

error_reporting(E_ALL); // everything

error_reporting(E_ERROR | E_PARSE); // only major problems

error_reporting(E_ALL & ~E_NOTICE); // everything but notices

Discussion
Every error generated has an error type associated with it. For example, if you try to
array_pop() a string, PHP complains that “This argument needs to be an array”,
since you can pop only arrays. The error type associated with this message is E_
NOTICE, a nonfatal runtime problem.

By default, the error reporting level is E_ALL & ~E_NOTICE, which means all error types
except notices. The & is a logical AND, and the ~ is a logical NOT. However, the php.ini-
recommended configuration file sets the error reporting level to E_ALL, which is all
error types.

Error messages flagged as notices are runtime problems that are less serious than
warnings. They’re not necessarily wrong, but they indicate a potential problem. One
example of an E_NOTICE is “Undefined variable”, which occurs if you try to use a vari-
able without previously assigning it a value:

// Generates an E_NOTICE
foreach ($array as $value) {
 $html .= $value;
}

// Doesn't generate any error message
$html = '';
foreach ($array as $value) {
 $html .= $value;
}

In the first case, the first time though the foreach, $html is undefined. So, when you
append to it, PHP lets you know you’re appending to an undefined variable. In the
second case, you assign the empty string to $html above the loop to avoid the E_
NOTICE. The previous two code snippets generate identical code because the default
value of a variable is the empty string. The E_NOTICE can be helpful because, for
example, you may have misspelled a variable name:

foreach ($array as $value) {
 $hmtl .= $value; // oops! that should be $html
}

$html = ''
foreach ($array as $value) {

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 8: Web Basics

 $hmtl .= $value; // oops! that should be $html
}

A custom error-handling function can parse errors based on their type and take an
appropriate action. A complete list of error types is shown in Table 8-2.

Errors labeled catchable can be processed by the function registered using set_error_
handler(). The others indicate such a serious problem that they’re not safe to be
handled by users, and PHP must take care of them.

See Also
Recipe 8.16 shows how to set up a custom error handler; documentation on error_
reporting() at http://www.php.net/error-reporting and set_error_handler() at http://
www.php.net/set-error-handler; for more information about errors, see http://
www.php.net/ref.errorfunc.php.

8.16 Using a Custom Error Handler

Problem
You want to create a custom error handler that lets you control how PHP reports
errors.

Solution
To set up your own error function, use set_error_handler():

Table 8-2. Error types

Value Constant Description Catchable

1 E_ERROR Nonrecoverable error No

2 E_WARNING Recoverable error Yes

4 E_PARSE Parser error No

8 E_NOTICE Possible error Yes

16 E_CORE_ERROR Like E_ERROR but generated by the PHP core No

32 E_CORE_WARNING Like E_WARNING but generated by the PHP core No

64 E_COMPILE_ERROR Like E_ERROR but generated by the Zend Engine No

128 E_COMPILE_WARNING Like E_WARNING but generated by the Zend Engine No

256 E_USER_ERROR Like E_ERROR but triggered by calling trigger_error() Yes

512 E_USER_WARNING Like E_WARNING but triggered by calling trigger_error() Yes

1024 E_USER_NOTICE Like E_NOTICE but triggered by calling trigger_error() Yes

2047 E_ALL Everything n/a

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.16 Using a Custom Error Handler | 193

set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line) {
 $message = "[ERROR][$errno][$error][$file:$line]";
 error_log($message);
}

Discussion
A custom error handling function can parse errors based on their type and take the
appropriate action. See Table 8-2 in Recipe 8.15 for a list of error types.

Pass set_error_handler() the name of a function, and PHP forwards all errors to that
function. The error handling function can take up to five parameters. The first
parameter is the error type, such as 8 for E_NOTICE. The second is the message thrown
by the error, such as “Undefined variable: html”. The third and fourth arguments are
the name of the file and the line number in which PHP detected the error. The final
parameter is an array holding all the variables defined in the current scope and their
values.

For example, in this script to $html is appended to without first assigning it an initial
value:

error_reporting(E_ALL);
set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line, $context) {
 $message = "[ERROR][$errno][$error][$file:$line]";
 print "$message";
 print_r($context);
}

$form = array('one','two');

foreach ($form as $line) {
 $html .= "$line";
}

When the “Undefined variable” error is generated, pc_error_handler() prints:

[ERROR][8][Undefined variable: html][err-all.php:16]

After the initial error message, pc_error_handler() also prints a large array contain-
ing all the globals, environment, request, and session variables.

Errors labeled catchable in Table 8-2 can be processed by the function registered
using set_error_handler(). The others indicate such a serious problem that they’re
not safe to be handled by users and PHP must take care of them.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 8: Web Basics

See Also
Recipe 8.15 lists the different error types; documentation on set_error_handler() at
http://www.php.net/set_error_handler.

8.17 Logging Errors

Problem
You want to write program errors to a log. These errors can include everything
from parser errors and files not being found to bad database queries and dropped
connections.

Solution
Use error_log() to write to the error log:

// LDAP error
if (ldap_errno($ldap)) {
 error_log("LDAP Error #" . ldap_errno($ldap) . ": " . ldap_error($ldap));
}

Discussion
Logging errors facilitates debugging. Smart error logging makes it easier to fix bugs.
Always log information about what caused the error:

$r = mysql_query($sql);
if (! $r) {
 $error = mysql_error();
 error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");
} else {
 // process results
}

You’re not getting all the debugging help you could be if you simply log that an error
occurred without any supporting information:

$r = mysql_query($sql);
if (! $r) {
 error_log("bad query");
} else {
 // process result
}

Another useful technique is to include the __FILE__ and __LINE__ constants in your
error messages:

error_log('['.__FILE__.']['.__LINE__."]: $error");

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.18 Eliminating “headers already sent” Errors | 195

The __FILE__ constant is the current filename, and __LINE__ is the current line
number.

See Also
Recipe 8.14 for hiding error messages from users; documentation on error_log() at
http://www.php.net/error-log.

8.18 Eliminating “headers already sent” Errors

Problem
You are trying to send a HTTP header or cookie using header() or setcookie(), but
PHP reports a “headers already sent” error message.

Solution
This error happens when you send nonheader output before calling header() or
setcookie().

Rewrite your code so any output happens after sending headers:

// good
setcookie("name", $name);
print "Hello $name!";

// bad
print "Hello $name!";
setcookie("name", $name);

// good
<?php setcookie("name",$name); ?>
<html><title>Hello</title>

Discussion
An HTTP message has a header and body, which are sent to the client in that order.
Once you begin sending a body, you can’t send any more headers. So, if you call
setcookie() after printing some HTML, PHP can’t send the appropriate Cookie
header.

Also, remove trailing whitespace in any include files. When you include a file with
blank lines outside <?php ?> tags, the blank lines are sent to the browser. Use trim()
to remove leading and trailing blank lines from files:

$file = '/path/to/file.php';

// backup

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 8: Web Basics

copy($file, "$file.bak") or die("Can't copy $file: $php_errormsg);

// read and trim
$contents = trim(join('',file($file)));

// write
$fh = fopen($file, 'w') or die("Can't open $file for writing: $php_errormsg);
if (-1 == fwrite($fh, $contents)) { die("Can't write to $file: $php_errormsg); }
fclose($fh) or die("Can't close $file: $php_errormsg);

Instead of processing files on a one-by-one basis, it may be more convenient to do so
on a directory-by-directory basis. Recipe 19.7 describes how to process all the files in
a directory.

If you don’t want to worry about blank lines disrupting the sending of headers, turn
on output buffering. Output buffering prevents PHP from immediately sending all
output to the client. If you buffer your output, you can intermix headers and body
text with abandon. However, it may seem to users that your server takes longer to
fulfill their requests since they have to wait slightly longer before the browser dis-
plays any output.

See Also
Recipe 8.12 discusses output buffering; Recipe 19.7 for processing all files in a direc-
tory; documentation on header() at http://www.php.net/header.

8.19 Logging Debugging Information

Problem
You want to make debugging easier by adding statements to print out variables. But,
you want to easily be able to switch back and forth from production and debug
modes.

Solution
Put a function that conditionally prints out messages based on a defined constant in
a page included using the auto_prepend_file configuration setting. Save the follow-
ing code to debug.php:

// turn debugging on
define('DEBUG',true);

// generic debugging function
function pc_debug($message) {
 if (defined(DEBUG) && DEBUG) {
 error_log($message);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.19 Logging Debugging Information | 197

}

Set the auto_prepend_file directive in php.ini:

auto_prepend_file=debug.php

Now call pc_debug() from your code to print out debugging information:

$sql = 'SELECT color, shape, smell FROM vegetables';
pc_debug("[sql: $sql]"); // only printed if DEBUG is true
$r = mysql_query($sql);

Discussion
Debugging code is a necessary side-effect of writing code. There are a variety of tech-
niques to help you quickly locate and squash your bugs. Many of these involve
including scaffolding that helps ensure the correctness of your code. The more com-
plicated the program, the more scaffolding needed. Fred Brooks, in The Mythical
Man Month, guesses that there’s “half as much code in scaffolding as there is in
product.” Proper planning ahead of time allows you to integrate the scaffolding into
your programming logic in a clean and efficient fashion. This requires you to think
out beforehand what you want to measure and record and how you plan on sorting
through the data gathered by your scaffolding.

One technique for sifting through the information is to assign different priority lev-
els to different types of debugging comments. Then, the debug function prints infor-
mation only if it’s higher than the current priority level.

define('DEBUG',2);

function pc_debug($message, $level = 0) {
 if (defined(DEBUG) && ($level > DEBUG) {
 error_log($message);
 }
}

$sql = 'SELECT color, shape, smell FROM vegetables';
pc_debug("[sql: $sql]", 1); // not printed, since 1 < 2
pc_debug("[sql: $sql]", 3); // printed, since 3 > 2

Another technique is to write wrapper functions to include additional information to
help with performance tuning, such as the time it takes to execute a database query.

function getmicrotime(){
 $mtime = microtime();
 $mtime = explode(' ',$mtime);
 return ($mtime[1] + $mtime[0]);
}

function db_query($sql) {
 if (defined(DEBUG) && DEBUG) {
 // start timing the query if DEBUG is on
 $DEBUG_STRING = "[sql: $sql]
\n";

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 8: Web Basics

 $starttime = getmicrotime();
 }

 $r = mysql_query($sql);

 if (! $r) {
 $error = mysql_error();
 error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");
 } elseif (defined(DEBUG) && DEBUG) {
 // the query didn't fail and DEBUG is turned on, so finish timing it
 $endtime = getmicrotime();
 $elapsedtime = $endtime - $starttime;
 $DEBUG_STRING .= "[time: $elapsedtime]
\n";
 error_log($DEBUG_STRING);
 }

 return $r;
}

Here, instead of just printing out the SQL to the error log, you also record the num-
ber of seconds it takes MySQL to perform the request. This lets you see if certain
queries are taking too long.

The getmicrotime() function converts the output of microtime() into a format that
allows you to easily perform addition and subtraction upon the numbers.

See Also
Documentation on define() at http://www.php.net/define, defined() at http://
www.php.net/defined, and error_log() at http://www.php.net/error-log.

8.20 Reading Environment Variables

Problem
You want to get the value of an environment variable.

Solution
Read the value from the $_ENV superglobal array:

$name = $_ENV['USER'];

Discussion
Environment variables are named values associated with a process. For instance, in
Unix, you can check the value of $HOME to find the home directory of a user:

print $_ENV['HOME']; // user's home directory

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.21 Setting Environment Variables | 199

/home/adam

Early versions of PHP automatically created PHP variables for all environment vari-
ables by default. As of 4.1.0, php.ini-recommended disables this because of speed
considerations; however php.ini-dist continues to enable environment variable load-
ing for backward compatibility.

The $_ENV array is created only if the value of the variables_order configuration
directive contains E. If $_ENV isn’t available, use getenv() to retrieve an environment
variable:

$path = getenv('PATH');

The getenv() function isn’t available if you’re running PHP as an ISAPI module.

See Also
Recipe 8.21 on setting environment variables; documentation on getenv() at http://
www.php.net/getenv; information on environment variables in PHP at http://
www.php.net/reserved.variables.php#reserved.variables.environment.

8.21 Setting Environment Variables

Problem
You want to set an environment variable in a script or in your server configuration.
Setting environment variables in your server configuration on a host-by-host basis
allows you to configure virtual hosts differently.

Solution
To set an environment variable in a script, use putenv():

putenv('ORACLE_SID=ORACLE'); // configure oci extension

To set an environment variable in your Apache httpd.conf file, use SetEnv:

SetEnv DATABASE_PASSWORD password

Discussion
An advantage of setting variables in httpd.conf is that you can set more restrictive
read permissions on it than on your PHP scripts. Since PHP files need to be readable
by the web-server process, this generally allows other users on the system to view
them. By storing passwords in httpd.conf, you can avoid placing a password in a pub-
lically available file. Also, if you have multiple hostnames that map to the same docu-

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 8: Web Basics

ment root, you can configure your scripts to behave differently based on the
hostnames.

For example, you could have members.example.com and guests.example.com. The
members version requires authentication and allows users additional access. The
guests version provides a restricted set of options, but without authentication:

$version = $_ENV['SITE_VERSION'];

// redirect to http://guest.example.com, if user fails to sign in correctly
if ('members' == $version) {
 if (!authenticate_user($_REQUEST['username'], $_REQUEST['password'])) {
 header('Location: http://guest.example.com/');
 exit;
 }
}

include_once "$version_header"; // load custom header

See Also
Recipe 8.20 on getting the values of environment variables; documentation on
putenv() at http://www.php.net/putenv; information on setting environment vari-
ables in Apache at http://httpd.apache.org/docs/mod/mod_env.html.

8.22 Reading Configuration Variables

Problem
You want to get the value of a PHP configuration setting.

Solution
Use ini_get():

// find out the include path:
$include_path = ini_get('include_path');

Discussion
To get all configuration variable values in one step, call ini_get_all(). It returns the
variables in an associative array, and each array element is itself an associative array.
The second array has three elements: a global value for the setting, a local value, and
an access code:

// put all configuration variables in an associative array
$vars = ini_get_all();
print_r($vars['include_path']);

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.22 Reading Configuration Variables | 201

Array
(
 [global_value] => .:/usr/local/lib/php/
 [local_value] => .:/usr/local/lib/php/
 [access] => 7
)

The global_value is the value set from the php.ini file; the local_value is adjusted to
account for any changes made in the web server’s configuration file, any relevant
.htaccess files, and the current script. The value of access is a numeric constant repre-
senting the places where this value can be altered. Table 8-3 explains the values for
access. Note that the name access is a little misleading in this respect, as the set-
ting’s value can always be checked, but not adjusted.

A value of 6 means the setting can be changed in both the directory and system level,
as 2 + 4 = 6. In practice, there are no variables only modifiable in PHP_INI_USER, so
everything has a value of 4, 6, or 7.

You can also get variables belonging to a specific extension by passing the extension
name to ini_get_all():

// return just the session module specific variables
$session = ini_get_all('session');

By convention, the variables for an extension are prefixed with the extension name
and a period. So, for example, all the session variables begin with session. and all the
Java variables begin with java..

Since ini_get() returns the current value for a configuration directive, if you want to
check the original value from the php.ini file, use get_cfg_var():

$original = get_cfg_var('sendmail_from'); // have we changed our address?

The value returned by get_cfg_var() is the same as what appears in the global_value
element of the array returned by ini_get_all().

See Also
Recipe 8.23 on setting configuration variables; Documentation on ini_get() at http:/
/www.php.net/ini_get, on ini_get_all() at http://www.php.net/ini_get_all, and on

Table 8-3. Access values

Value PHP constant Meaning

1 PHP_INI_USER Any script, using ini_set()

2 PHP_INI_PERDIR Directory level, using .htaccess

4 PHP_INI_SYSTEM System level, using php.ini or httpd.conf

7 PHP_INI_ALL Everywhere: scripts, directories, and the system

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 8: Web Basics

get_cfg_var() at http://www.php.net/get_cfg_var; a complete list of configuration
variables and when they can be modified at http://www.php.net/function.ini-set.php.

8.23 Setting Configuration Variables

Problem
You want to change the value of a PHP configuration setting.

Solution
Use ini_set():

// add a directory to the include path
ini_set('include_path', ini_get('include_path') . ':/home/fezzik/php');

Discussion
Configuration variables are not permanently changed by ini_set(). The new value
lasts only for the duration of the request in which ini_set() is called. To make a per-
sistent modification, alter the values stored in the php.ini file.

It isn’t meaningful to alter certain variables, such as asp_tags or register_globals
because by the time you call ini_set() to modify the setting, it’s too late to change
the behavior the setting affects. If a variable can’t be changed, ini_set() returns
false.

However, it is useful to alter configuration variables in certain pages. For example, if
you’re running a script from the command line, set html_errors to Off.

To reset a variable back to its original setting, use ini_restore():

ini_restore('sendmail_from'); // go back to the default value

See Also
Recipe 8.22 on getting the values of configuration variables; documentation on ini_
set() at http://www.php.net/ini_set and ini_restore() at http://www.php.net/ini_
restore.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.24 Communicating Within Apache | 203

8.24 Communicating Within Apache

Problem
You want to communicate from PHP to other parts of the Apache request process.
This includes setting variables in the access_log.

Solution
Use apache_note():

// get value
$session = apache_note('session');

// set value
apache_note('session', $session);

Discussion
When Apache processes a request from a client, it goes through a series of steps;
PHP plays only one part in the entire chain. Apache also remaps URLs, authenti-
cates users, logs requests, and more. While processing a request, each handler has
access to a set of key/value pairs called the notes table. The apache_note() function
provides access to the notes table to retrieve information set by handlers earlier on in
the process and leave information for handlers later on.

For example, if you use the session module to track users and preserve variables
across requests, you can integrate this with your log file analysis so you can deter-
mine the average number of page views per user. Use apache_note() in combination
with the logging module to write the session ID directly to the access_log for each
request:

// retrieve the session ID and add it to Apache's notes table
apache_note('session_id', session_id());

Then, modify your httpd.conf file to add this string to your LogFormat:

%{session_id}n

The trailing n tells Apache to use a variable stored in its notes table by another module.

If PHP is built with the --enable-memory-limit configuration option, it stores the
peak memory usage of each request in a note called mod_php_memory_usage. Add the
memory usage information to a LogFormat with:

%{mod_php_memory_usage}n

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 8: Web Basics

See Also
Documentation on apache_note() at http://www.php.net/apache-note; information on
logging in Apache at http://httpd.apache.org/docs/mod/mod_log_config.html.

8.25 Profiling Code

Problem
You have a block of code and you want to profile it to see how long each statement
takes to execute.

Solution
Use the PEAR Benchmark module:

require 'Benchmark/Timer.php';

$timer =& new Benchmark_Timer(true);

$timer->start();
// some setup code here
$timer->setMarker('setup');
// some more code executed here
$timer->setMarker('middle');
// even yet still more code here
$timer->setmarker('done');
// and a last bit of code here
$timer->stop();

$timer->display();

Discussion
Calling setMarker() records the time. The display() method prints out a list of
markers, the time they were set, and the elapsed time from the previous marker:

marker time index ex time perct

Start 1029433375.42507400 - 0.00%

setup 1029433375.42554800 0.00047397613525391 29.77%

middle 1029433375.42568700 0.00013899803161621 8.73%

done 1029433375.42582000 0.00013303756713867 8.36%

Stop 1029433375.42666600 0.00084602832794189 53.14%

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.25 Profiling Code | 205

total - 0.0015920400619507 100.00%

The Benchmark module also includes the Benchmark_Iterate class, which can be
used to time many executions of a single function:

require 'Benchmark/Iterate.php';

$timer =& new Benchmark_Iterate;

// a sample function to time
function use_preg($ar) {
 for ($i = 0, $j = count($ar); $i < $j; $i++) {
 if (preg_match('/gouda/',$ar[$i])) {
 // it's gouda
 }
 }
}

// another sample function to time
function use_equals($ar) {
 for ($i = 0, $j = count($ar); $i < $j; $i++) {
 if ('gouda' == $ar[$i]) {
 // it's gouda
 }
 }
}

// run use_preg() 1000 times
$timer->run(1000,'use_preg',
 array('gouda','swiss','gruyere','muenster','whiz'));
$results = $timer->get();
print "Mean execution time for use_preg(): $results[mean]\n";

// run use_equals() 1000 times
$timer->run(1000,'use_equals',
 array('gouda','swiss','gruyere','muenster','whiz'));
$results = $timer->get();
print "Mean execution time for use_equals(): $results[mean]\n";

The Benchmark_Iterate::get() method returns an associative array. The mean ele-
ment of this array holds the mean execution time for each iteration of the function.
The iterations element holds the number of iterations. The execution time of each
iteration of the function is stored in an array element with an integer key. For exam-
ple, the time of the first iteration is in $results[1], and the time of the 37th iteration
is in $results[37].

To automatically record the elapsed execution time after every line of PHP code, use
the declare construct and the ticks directive:

function profile($display = false) {
 static $times;

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 8: Web Basics

 switch ($display) {
 case false:
 // add the current time to the list of recorded times
 $times[] = microtime();
 break;
 case true:
 // return elapsed times in microseconds
 $start = array_shift($times);

 $start_mt = explode(' ', $start);
 $start_total = doubleval($start_mt[0]) + $start_mt[1];

 foreach ($times as $stop) {
 $stop_mt = explode(' ', $stop);
 $stop_total = doubleval($stop_mt[0]) + $stop_mt[1];
 $elapsed[] = $stop_total - $start_total;
 }

 unset($times);
 return $elapsed;
 break;
 }
}

// register tick handler
register_tick_function('profile');

// clock the start time
profile();

// execute code, recording time for every statement execution
declare (ticks = 1) {
 foreach ($_SERVER['argv'] as $arg) {
 print strlen($arg);
 }
}

// print out elapsed times
$i = 0;
foreach (profile(true) as $time) {
 $i++;
 print "Line $i: $time\n";
}

The ticks directive allows you to execute a function on a repeatable basis for a block
of code. The number assigned to ticks is how many statements go by before the
functions registered using register_tick_function() are executed.

In the previous example, you register a single function and have the profile() func-
tion execute for every statement inside the declare block. If there are two elements in
$_SERVER['argv'], profile() is executed four times: once for each time through the
foreach loop, and once each time the print strlen($arg) line is executed.

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.26 Program: Website Account (De)activator | 207

You can also set things up to call two functions every three statements:

register_tick_function('profile');
register_tick_function('backup');

declare (ticks = 3) {
 // code...
}

You can also pass additional parameters into the registered functions, which can be
object methods instead of regular functions:

// pass "parameter" into profile()
register_tick_function('profile', 'parameter');

// call $car->drive();
$car = new Vehicle;
register_tick_function(array($car, 'drive'));

If you want to execute an object method, pass the object and the name of the
method in encapsulated within an array. This lets the register_tick_function()
know you’re referring to an object instead of a function.

Call unregister_tick_function() to remove a function from the list of tick functions:

unregister_tick_function('profile');

See Also
The PEAR Benchmark class at http://pear.php.net/package-info.php?pacid=53; docu-
mentation on register_tick_function() at http://www.php.net/register-tick-function,
unregister_tick_function() at http://www.php.net/unregister-tick-function, and
declare at http://www.php.net/declare.

8.26 Program: Website Account (De)activator
When users sign up for your web site, it’s helpful to know that they’ve provided you
with a correct email address. To validate the email address they provide, send an
email to the address they supply when they sign up. If they don’t visit a special URL
included in the email after a few days, deactivate their account.

This system has three parts. The first is the notify-user.php program that sends an
email to a new user and asks them to visit a verification URL, shown in Example 8-4.
The second, shown in Example 8-5, is the verify-user.php page that handles the veri-
fication URL and marks users as valid. The third is the delete-user.php program that
deactivates accounts of users who don’t visit the verification URL after a certain
amount of time. This program is shown in Example 8-6.

Here’s the SQL to create the table that user information is stored in:

CREATE TABLE users (

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 8: Web Basics

 email VARCHAR(255) NOT NULL,
 created_on DATETIME NOT NULL,
 verify_string VARCHAR(16) NOT NULL,
 verified TINYINT UNSIGNED
);

You probably want to store more information than this about your users, but this is
all that’s needed to verify them. When creating a user’s account, save information to
the users table, and send the user an email telling them how to verify their account.
The code in Example 8-4 assumes that user’s email address is stored in the variable
$email.

The verification page users go to when they follow the link in the email message
updates the users table if the proper information has been provided, as shown in
Example 8-5.

Example 8-4. notify-user.php

// generate verify_string
$verify_string = '';
for ($i = 0; $i < 16; $i++) {
 $verify_string .= chr(mt_rand(32,126));
}

// insert user into database
if (! mysql_query("INSERT INTO users (email,created_on,verify_string,verified)
 VALUES ('".addslashes($email)."',NOW(),'".addslashes($verify_string)."',0)")) {
 error_log("Can't insert user: ".mysql_error());
 exit;
}

$verify_string = urlencode($verify_string);
$safe_email = urlencode($email);

$verify_url = "http://www.example.com/verify.php";

$mail_body=<<<_MAIL_
To $email:

Please click on the following link to verify your account creation:

$verify_url?email=$safe_email&verify_string=$verify_string

If you do not verify your account in the next seven days, it will be
deleted.
MAIL;

mail($email,"User Verification",$mail_body);

Example 8-5. verify-user.php

$safe_email = addslashes($email);
$safe_verify_string = addslashes($verify_string);

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.27 Program: Abusive User Checker | 209

The user’s verification status is updated only if the email address and verify string
provided match a row in the database that has not already been verified. The last
step is the short program that deletes unverified users after the appropriate interval,
as shown in Example 8-6.

Run this program once a day to scrub the users table of users that haven’t been veri-
fied. If you want to change how long users have to verify themselves, adjust the value
of $window, and update the text of the email message sent to users to reflect the new
value.

8.27 Program: Abusive User Checker
Shared memory’s speed makes it an ideal way to store data different web server pro-
cesses need to access frequently when a file or database would be too slow.
Example 8-7 shows the pc_Web_Abuse_Check class, which uses shared memory to
track accesses to web pages in order to cut off users that abuse a site by bombarding
it with requests.

if ($r = mysql_query("UPDATE users SET verified = 1 WHERE email
 LIKE '$safe_email' AND
 verify_string = '$safe_verify_string' AND verified = 0")) {
 if (mysql_affected_rows() == 1) {
 print "Thank you, your account is verified.";
 } else {
 print "Sorry, you could not be verified.";
 }
} else {
 print "Please try again later due to a database error.";
}

Example 8-6. delete-user.php

$window = 7; // in days

if ($r = mysql_query("DELETE FROM users WHERE verified = 0 AND
 created_on < DATE_SUB(NOW(),INTERVAL $window DAY)")) {
 if ($deleted_users = mysql_affected_rows()) {
 print "Deactivated $deleted_users users.\n";
 }
} else {
 print "Can't delete users: ".mysql_error();
}

Example 8-7. pc_Web_Abuse_Check class

class pc_Web_Abuse_Check {
 var $sem_key;
 var $shm_key;

Example 8-5. verify-user.php (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 8: Web Basics

 var $shm_size;
 var $recalc_seconds;
 var $pageview_threshold;
 var $sem;
 var $shm;
 var $data;
 var $exclude;
 var $block_message;

 function pc_Web_Abuse_Check() {
 $this->sem_key = 5000;
 $this->shm_key = 5001;
 $this->shm_size = 16000;
 $this->recalc_seconds = 60;
 $this->pageview_threshold = 30;

 $this->exclude['/ok-to-bombard.html'] = 1;
 $this->block_message =<<<END
<html>
<head><title>403 Forbidden</title></head>
<body>
<h1>Forbidden</h1>
You have been blocked from retrieving pages from this site due to
abusive repetitive activity from your account. If you believe this
is an error, please contact
webmaster@example.com.
</body>
</html>
END;
 }

 function get_lock() {
 $this->sem = sem_get($this->sem_key,1,0600);
 if (sem_acquire($this->sem)) {
 $this->shm = shm_attach($this->shm_key,$this->shm_size,0600);
 $this->data = shm_get_var($this->shm,'data');
 } else {
 error_log("Can't acquire semaphore $this->sem_key");
 }
 }

 function release_lock() {
 if (isset($this->data)) {
 shm_put_var($this->shm,'data',$this->data);
 }
 shm_detach($this->shm);
 sem_release($this->sem);
 }

 function check_abuse($user) {
 $this->get_lock();
 if ($this->data['abusive_users'][$user]) {

Example 8-7. pc_Web_Abuse_Check class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.27 Program: Abusive User Checker | 211

To use this class, call its check_abuse() method at the top of a page, passing it the
username of a logged in user:

// get_logged_in_user_name is a function that finds out if a user is logged in
if ($user = get_logged_in_user_name()) {
 $abuse = new pc_Web_Abuse_Check();
 if ($abuse->check_abuse($user)) {
 exit;
 }
}

The check_abuse() method secures exclusive access to the shared memory segment
in which information about users and traffic is stored with the get_lock() method. If
the current user is already on the list of abusive users, it releases its lock on the
shared memory, prints out an error page to the user, and returns true. The error
page is defined in the class’s constructor.

 // if user is on the list release the semaphore & memory
 $this->release_lock();
 // serve the "you are blocked" page
 header('HTTP/1.0 403 Forbidden');
 print $this->block_message;
 return true;
 } else {
 // mark this user looking at a page at this time
 $now = time();
 if (! $this->exclude[$_SERVER['PHP_SELF']]) {
 $this->data['user_traffic'][$user]++;
 }
 // (sometimes) tote up the list and add bad people
 if (! $this->data['traffic_start']) {
 $this->data['traffic_start'] = $now;
 } else {
 if (($now - $this->data['traffic_start']) > $this->recalc_seconds) {
 while (list($k,$v) = each($this->data['user_traffic'])) {
 if ($v > $this->pageview_threshold) {
 $this->data['abusive_users'][$k] = $v;
 // log the user's addition to the abusive user list
 error_log("Abuse: [$k] (from ".$_SERVER['REMOTE_ADDR'].')');
 }
 }
 $this->data['traffic_start'] = $now;
 $this->data['user_traffic'] = array();
 }
 }
 $this->release_lock();
 }
 return false;
 }
}

Example 8-7. pc_Web_Abuse_Check class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 8: Web Basics

If the user isn’t on the abusive user list, and the current page (stored in $_
SERVER['PHP_SELF']) isn’t on a list of pages to exclude from abuse checking, the count
of pages that the user has looked at is incremented. The list of pages to exclude is also
defined in the constructor. By calling check_abuse() at the top of every page and put-
ting pages that don’t count as potentially abusive in the exclude array, you ensure that
an abusive user will see the error page even when retrieving a page that doesn’t count
towards the abuse threshold. This makes your site behave more consistently.

The next section of check_abuse() is responsible for adding users to the abusive users
list. If more than $this->recalc_seconds have passed since the last time it added
users to the abusive users list, it looks at each user’s pageview count and if any are
over $this->pageview_threshold, they are added to the abusive users list, and a mes-
sage is put in the error log. The code that sets $this->data['traffic_start'] if it’s
not already set is executed only the very first time check_abuse() is called. After add-
ing any new abusive users, check_abuse() resets the count of users and pageviews
and starts a new interval until the next time the abusive users list is updated. After
releasing its lock on the shared memory segment, it returns false.

All the information check_abuse() needs for its calculations, such as the abusive user
list, recent pageview counts for users, and the last time abusive users were calcu-
lated, is stored inside a single associative array, $data. This makes reading the values
from and writing the values to shared memory easier than if the information was
stored in separate variables, because only one call to shm_get_var() and shm_put_var(
) are necessary.

The pc_Web_Abuse_Check class blocks abusive users, but it doesn’t provide any report-
ing capabilities or a way to add or remove specific users from the list. Example 8-8
shows the abuse-manage.php program, which lets you manage the abusive user data.

Example 8-8. abuse-manage.php

// the pc_Web_Abuse_Check class is defined in abuse-check.php
require 'abuse-check.php';

$abuse = new pc_Web_Abuse_Check();
$now = time();

// process commands, if any
$abuse->get_lock();
switch ($_REQUEST['cmd']) {
 case 'clear':
 $abuse->data['traffic_start'] = 0;
 $abuse->data['abusive_users'] = array();
 $abuse->data['user_traffic'] = array();
 break;
 case 'add':
 $abuse->data['abusive_users'][$user] = 'web @ '.strftime('%c',$now);
 break;
 case 'remove':

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.27 Program: Abusive User Checker | 213

 $abuse->data['abusive_users'][$user] = 0;
 break;
}
$abuse->release_lock();

// now the relevant info is in $abuse->data

print 'It is now '.strftime('%c',$now).'
';
print 'Current interval started at '.strftime('%c',$abuse->data['traffic_start']);
print ' ('.($now - $abuse->data['traffic_start']).' seconds ago).<p>';

print 'Traffic in the current interval:
';
if (count($abuse->data['user_traffic'])) {
 print '<table border="1"><tr><th>User</th><th>Pages</th></tr>';
 while (list($user,$pages) = each($abuse->data['user_traffic'])) {
 print "<tr><td>$user</td><td>$pages</td></tr>";
 }
 print "</table>";
} else {
 print "<i>No traffic.</i>";
}
print '<p>Abusive Users:';

if ($abuse->data['abusive_users']) {
 print '<table border="1"><tr><th>User</th><th>Pages</th></tr>';
 while (list($user,$pages) = each($abuse->data['abusive_users'])) {
 if (0 === $pages) {
 $pages = 'Removed';
 $remove_command = '';
 } else {
 $remove_command =
 "remove";
 }
 print "<tr><td>$user</td><td>$pages</td><td>$remove_command</td></tr>";
 }
 print '</table>';
} else {
 print "<i>No abusive users.</i>";
}

print<<<END
<form method="post" action="$_SERVER[PHP_SELF]">
<input type="hidden" name="cmd" value="add">
Add this user to the abusive users list:
<input type="text" name="user" value="">

<input type="submit" value="Add User">
</form>
<hr>
<form method="post" action="$_SERVER[PHP_SELF]">
<input type="hidden" name="cmd" value="clear">

Example 8-8. abuse-manage.php (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 8: Web Basics

Example 8-8 prints out information about current user page view counts and the cur-
rent abusive user list, as shown in Figure 8-1. It also lets you add or remove specific
users from the list and clear the whole list.

When it removes users from the abusive users list, instead of:

unset($abuse->data['abusive_users'][$user])

it sets the following to 0:

$abuse->data['abusive_users'][$user]

This still causes check_abuse() to return false, but it allows the page to explicitly
note that the user was on the abusive users list but was removed. This is helpful to
know in case a user that was removed starts causing trouble again.

<input type="submit" value="Clear the abusive users list">
END;

Figure 8-1. Abusive users

Example 8-8. abuse-manage.php (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8.27 Program: Abusive User Checker | 215

When a user is added to the abusive users list, instead of recording a pageview count,
the script records the the time the user was added. This is helpful in tracking down
who or why the user was manually added to the list.

If you deploy pc_Web_Abuse_Check and this maintenance page on your server, make
sure that the maintenance page is protected by a password or otherwise inaccessible
to the general public. Obviously, this code isn’t very helpful if abusive users can
remove themselves from the list of abusive users.

